Trail HIV Vaccine Triggered elusive & essential antibodies in humans

June, 2024

Article Source

Content provided by Science Daily​ ( Note: Content, including the headline, may have been edited for style and length.

The finding, reported May 17 in the journal Cell, not only provides proof that a vaccine can elicit these antibodies to fight diverse strains of HIV, but that it can also initiate the process within weeks, setting in motion an essential immune response. The vaccine candidate targets an area on the HIV-1 outer envelope called the membrane proximal external region (MPER), which remains stable even as the virus mutates. Antibodies against this stable region in the HIV outer coat can block infection by many different circulating strains of HIV.

"This work is a major step forward as it shows the feasibility of inducing antibodies with immunizations that neutralize the most difficult strains of HIV," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute (DHVI). "Our next steps are to induce more potent neutralizing antibodies against other sites on HIV to prevent virus escape. We are not there yet, but the way forward is now much clearer."

The research team analyzed data from a phase 1 clinical trial of a vaccine candidate developed by Haynes and S. Munir Alam, Ph.D., at DHVI.

Twenty healthy, HIV-negative people enrolled in the trial. Fifteen participants received two of four planned doses of the investigational vaccine, and five received three doses.

After just two immunizations, the vaccine had a 95% serum response rate and a 100% blood CD4+ T-cell response rate -- two key measurements that demonstrated strong immune activation. Most of the serum responses mapped to the portion of the virus targeted by the vaccine.

Importantly, broadly neutralizing antibodies were induced after just two doses.

The trial was halted when one participant experienced a non-life-threatening allergic reaction, similar to rare incidents reported with COVID-19 vaccinations. The team investigated the cause of the event, which was likely from an additive.

"To get a broadly neutralizing antibody, a series of events needs to happen, and it typically takes several years post-infection," said lead author Wilton Williams, Ph.D., associate professor in Duke's Department of Surgery and member of DHVI. "The challenge has always been to recreate the necessary events in a shorter space of time using a vaccine. It was very exciting to see that, with this vaccine molecule, we could actually get neutralizing antibodies to emerge within weeks."

Other features of the vaccine were also promising, most notably how the crucial immune cells remained in a state of development that allowed them to continue acquiring muta

Their findings published in Joule, however, revealed a surprising twist.

"Making solar cells super-efficient turns out to be very difficult. So, instead of just trying to make solar cells better, we figured some other ways to capture more solar energy," said Dr. Tomi Baikie, first author of the study and Research Fellow at the Cavendish Laboratory and at Lucy Cavendish College.

"This could be really helpful for communities, giving them different options to think about, instead of just focusing on making the cells more efficient with light."

Imagine solar panels that can flex and fold like origami or become partially transparent to blend seamlessly into surroundings and make them easy to install.

Article Source

Content provided by Science Daily ( Note: Content, including the headline, may have been edited for style and length.

become a volunteer

Help change lives for the better.